Part Number Hot Search : 
3NK90ZFP XT350 SF5J42 STS15N4 12N120 82845MZ JTB455C7 PESD5
Product Description
Full Text Search
 

To Download APT20GT60BRDQ1 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 TYPICAL PERFORMANCE CURVES (R)
APT20GT60BRDQ1 APT20GT60BRDQ1G*
APT20GT60BRDQ1(G) 600V
*G Denotes RoHS Compliant, Pb Free Terminal Finish.
Thunderbolt IGBT(R)
The Thunderblot IGBT(R) is a new generation of high voltage power IGBTs. Using Non- Punch Through Technology, the Thunderblot IGBT(R) offers superior ruggedness and ultrafast switching speed. * Low Forward Voltage Drop * Low Tail Current * RBSOA and SCSOA Rated * High Freq. Switching to 150KHz * Ultra Low Leakage Current
G
TO -2 47
C
E
C G E
MAXIMUM RATINGS
Symbol VCES VGE I C1 I C2 I CM SSOA PD TJ,TSTG TL Parameter Collector-Emitter Voltage Gate-Emitter Voltage Continuous Collector Current @ TC = 25C Continuous Collector Current @ TC = 110C Pulsed Collector Current
1
All Ratings: TC = 25C unless otherwise specified.
APT20GT60BRDQ1(G) UNIT Volts
600 30 43 20 80 80A @ 600V 174 -55 to 150 300
Amps
@ TC = 150C
Switching Safe Operating Area @ TJ = 150C Total Power Dissipation Operating and Storage Junction Temperature Range Max. Lead Temp. for Soldering: 0.063" from Case for 10 Sec.
Watts C
STATIC ELECTRICAL CHARACTERISTICS
Symbol V(BR)CES VGE(TH) VCE(ON) Characteristic / Test Conditions Collector-Emitter Breakdown Voltage (VGE = 0V, I C = 0.5mA) Gate Threshold Voltage (VCE = VGE, I C = 500A, Tj = 25C) MIN TYP MAX Units
600 3 1.6 4 2.0 2.8 50
2
5 2.5
Collector-Emitter On Voltage (VGE = 15V, I C = 20A, Tj = 25C) Collector-Emitter On Voltage (VGE = 15V, I C = 20A, Tj = 125C) Collector Cut-off Current (VCE = 600V, VGE = 0V, Tj = 25C)
2
Volts
I CES I GES
A nA
12-2005 052-6265 Rev B
Collector Cut-off Current (VCE = 600V, VGE = 0V, Tj = 125C) Gate-Emitter Leakage Current (VGE = 20V)
1000 100
CAUTION: These Devices are Sensitive to Electrostatic Discharge. Proper Handling Procedures Should Be Followed.
APT Website - http://www.advancedpower.com
DYNAMIC CHARACTERISTICS
Symbol Cies Coes Cres VGEP Qg Qge Qgc SSOA td(on) td(off) tf Eon1 Eon2 td(on) tr td(off) tf Eon1 Eon2 Eoff Eoff tr Characteristic Input Capacitance Output Capacitance Reverse Transfer Capacitance Gate-to-Emitter Plateau Voltage Total Gate Charge
3
APT20GT60BRDQ1(G)
Test Conditions Capacitance VGE = 0V, VCE = 25V f = 1 MHz Gate Charge VCE = 300V I C = 20A TJ = 150C, R G = 5, VGE = VGE = 15V MIN TYP MAX UNIT pF V nC
1100 110 65 7.5 100 7 43 80 8 9 80 39 215 210 245 8 9 100 60 215 375 395 J
ns ns A
Gate-Emitter Charge Gate-Collector ("Miller ") Charge Switching Safe Operating Area Turn-on Delay Time Current Rise Time Turn-off Delay Time Current Fall Time Turn-on Switching Energy Turn-off Switching Energy Turn-on Delay Time Current Rise Time Turn-off Delay Time Current Fall Time Turn-on Switching Energy Turn-off Switching Energy
44 55 4 5
15V, L = 100H,VCE = 600V Inductive Switching (25C) VCC = 400V VGE = 15V I C = 20A RG = 5
Turn-on Switching Energy (Diode)
6
TJ = +25C Inductive Switching (125C) VCC = 400V VGE = 15V I C = 20A RG = 5
J
Turn-on Switching Energy (Diode)
6
TJ = +125C
THERMAL AND MECHANICAL CHARACTERISTICS
Symbol RJC RJC WT Characteristic Junction to Case (IGBT) Junction to Case (DIODE) Package Weight MIN TYP MAX UNIT C/W gm
.72 1.35 5.9
1 Repetitive Rating: Pulse width limited by maximum junction temperature. 2 For Combi devices, Ices includes both IGBT and FRED leakages 3 See MIL-STD-750 Method 3471. 4 Eon1 is the clam ped inductive turn-on-energy of the IGBT only, without the effect of a commutating diode reverse recovery current adding to the IGBT turn-on loss. (See Figure 24.)
12-2005
5 Eon2 is the clamped inductive turn-on energy that includes a commutating diode reverse recovery current in the IGBT turn-on switching loss. (See Figures 21, 22.) 6 Eoff is the clamped inductive turn-off energy measured in accordance with JEDEC standard JESD24-1. (See Figures 21, 23.)
APT Reserves the right to change, without notice, the specifications and information contained herein.
052-6265
Rev B
TYPICAL PERFORMANCE CURVES
80 70 IC, COLLECTOR CURRENT (A) 60 50 40 30 20 10 0 0 1 2 3 4 5 6 VCE, COLLECTER-TO-EMITTER VOLTAGE (V)
250s PULSE TEST<0.5 % DUTY CYCLE
120 100 80 60 40 20 0
APT20GT60BRDQ1(G)
15V
13V
IC, COLLECTOR CURRENT (A)
TJ = -55C
11V
10V 9V 8V 7V 6V
TJ = 25C TJ = 125C
80 70 60 50 40 30 20 10
FIGURE 1, Output Characteristics(TJ = 25C) VGE, GATE-TO-EMITTER VOLTAGE (V)
16 14 12 10
FIGURE 2, Output Characteristics (TJ = 125C)
I = 20A C T = 25C
J
0 5 10 15 20 VCE, COLLECTER-TO-EMITTER VOLTAGE (V)
IC, COLLECTOR CURRENT (A)
VCE = 120V VCE = 300V
TJ = -55C
8 6 4 2 0 0 20 40 60 80 100 GATE CHARGE (nC) FIGURE 4, Gate Charge 120
VCE = 480V
TJ = 25C TJ = 125C
0
0
2 4 6 8 10 12 VGE, GATE-TO-EMITTER VOLTAGE (V) FIGURE 3, Transfer Characteristics VCE, COLLECTOR-TO-EMITTER VOLTAGE (V)
VCE, COLLECTOR-TO-EMITTER VOLTAGE (V)
4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5
TJ = 25C. 250s PULSE TEST <0.5 % DUTY CYCLE
4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0 25
VGE = 15V. 250s PULSE TEST <0.5 % DUTY CYCLE
IC = 40A IC = 20A
IC = 40A IC = 20A
IC = 10A
IC = 10A
8 10 12 14 16 VGE, GATE-TO-EMITTER VOLTAGE (V) FIGURE 5, On State Voltage vs Gate-to- Emitter Voltage 1.15
0
6
50 75 100 125 150 TJ, Junction Temperature (C) FIGURE 6, On State Voltage vs Junction Temperature 60
IC, DC COLLECTOR CURRENT(A)
VGS(TH), THRESHOLD VOLTAGE (NORMALIZED)
1.10 1.05 1.00 0.95 0.90 0.85 0.80 0.75
50 40 30 20 10 0 -50 12-2005 052-6265 Rev B
0.70 -50 -25 0 25 50 75 100 125 150 TJ, JUNCTION TEMPERATURE (C) FIGURE 7, Threshold Voltage vs. Junction Temperature
-25 0 25 50 75 100 125 150 TC, CASE TEMPERATURE (C) FIGURE 8, DC Collector Current vs Case Temperature
10 td(ON), TURN-ON DELAY TIME (ns) VGE = 15V 8 td (OFF), TURN-OFF DELAY TIME (ns)
120 100 80 60 40 20 VCE = 400V RG = 5
VGE =15V,TJ=125C
APT20GT60BRDQ1(G)
6
VGE =15V,TJ=25C
4
2 VCE = 400V
10 15 20 25 30 35 40 45 ICE, COLLECTOR TO EMITTER CURRENT (A) FIGURE 9, Turn-On Delay Time vs Collector Current 5
35 30 25 20 15 10 5 0
RG = 5, L = 100H, VCE = 400V
0
TJ = 25C, or 125C RG = 5 L = 100H
35 40 45 20 25 30 10 15 ICE, COLLECTOR TO EMITTER CURRENT (A) FIGURE 10, Turn-Off Delay Time vs Collector Current 5
90 80 70 tf, FALL TIME (ns)
TJ = 125C, VGE = 15V
0
L = 100H
RG = 5, L = 100H, VCE = 400V
tr, RISE TIME (ns)
60 50 40 30 20
TJ = 25C, VGE = 15V
TJ = 25 or 125C,VGE = 15V
10
10 15 20 25 30 35 40 45 5 ICE, COLLECTOR TO EMITTER CURRENT (A) FIGURE 11, Current Rise Time vs Collector Current
1200 EON2, TURN ON ENERGY LOSS (J) 1000 800 600 400 200
TJ = 25C
10 15 20 25 30 35 40 45 5 ICE, COLLECTOR TO EMITTER CURRENT (A) FIGURE 12, Current Fall Time vs Collector Current
800 EOFF, TURN OFF ENERGY LOSS (J) 700 600 500 400 300 200 100
TJ = 25C
= 400V V CE = +15V V GE R = 5
G
0
= 400V V CE = +15V V GE R = 5
G
TJ = 125C
TJ = 125C
10 15 20 25 30 35 40 45 5 ICE, COLLECTOR TO EMITTER CURRENT (A) FIGURE 13, Turn-On Energy Loss vs Collector Current
1800 SWITCHING ENERGY LOSSES (J) 1600 1400 1200 1000 800 600 400 200 0
Eon2,20A Eon2,10A Eoff,10A Eoff,40A
= 400V V CE = +15V V GE T = 125C
J
0
10 15 20 25 30 35 40 45 5 ICE, COLLECTOR TO EMITTER CURRENT (A) FIGURE 14, Turn Off Energy Loss vs Collector Current
1200 SWITCHING ENERGY LOSSES (J)
= 400V V CE = +15V V GE R = 5
G
0
Eon2,40A
1000 800 600 400
Eon2,40A
Eoff,20A
Eoff,40A
12-2005
Eoff,20A
Eon2,20A Eoff,10A Eon2,10A
Rev B
200 0
052-6265
50 40 30 20 10 RG, GATE RESISTANCE (OHMS) FIGURE 15, Switching Energy Losses vs. Gate Resistance 0
125 100 75 50 25 TJ, JUNCTION TEMPERATURE (C) FIGURE 16, Switching Energy Losses vs Junction Temperature 0
TYPICAL PERFORMANCE CURVES
2,000 1,000 C, CAPACITANCE ( F) 500 IC, COLLECTOR CURRENT (A) Cies
100 90 80 70 60 50 40 30 20 10
APT20GT60BRDQ1(G)
P
100 50
Coes Cres
10 0 10 20 30 40 50 VCE, COLLECTOR-TO-EMITTER VOLTAGE (VOLTS) Figure 17, Capacitance vs Collector-To-Emitter Voltage
0 100 200 300 400 500 600 700 VCE, COLLECTOR TO EMITTER VOLTAGE Figure 18,Minimim Switching Safe Operating Area
0
0.35 0.30 0.25 0.20 0.15 0.10 0.05 0 0.5
Note:
ZJC, THERMAL IMPEDANCE (C/W)
D = 0.9
0.7
PDM
0.3 SINGLE PULSE
t1 t2
0.1 0.05 10-5 10-4
Duty Factor D = 1/t2 Peak TJ = PDM x ZJC + TC
t
10-3 10-2 10-1 RECTANGULAR PULSE DURATION (SECONDS) Figure 19a, Maximum Effective Transient Thermal Impedance, Junction-To-Case vs Pulse Duration
1.0
250 FMAX, OPERATING FREQUENCY (kHz) 100 50
RC MODEL Junction temp. (C) 0.407 Power (watts) 0.314 Case temperature. (C) 0.0585 0.00165
F
10 5
= min (fmax, fmax2) 0.05 fmax1 = td(on) + tr + td(off) + tf
max
T = 125C J T = 75C C D = 50 % V = 400V CE R = 5
G
fmax2 = Pdiss =
Pdiss - Pcond Eon2 + Eoff TJ - TC RJC
FIGURE 19b, TRANSIENT THERMAL IMPEDANCE MODEL
15 20 25 30 35 40 IC, COLLECTOR CURRENT (A) Figure 20, Operating Frequency vs Collector Current
1
5
10
052-6265
Rev B
12-2005
APT20GT60BRDQ1(G)
APT15DQ60
10%
Gate Voltage TJ = 125C
V CC
IC
V CE
td(on) tr 90% Collector Current
A D.U.T.
5%
10%
Switching Energy
5% Collector Voltage
Figure 21, Inductive Switching Test Circuit
Figure 22, Turn-on Switching Waveforms and Definitions
90%
Gate Voltage
TJ = 125C
td(off) tf
Collector Voltage
90% 10%
Switching Energy
0
Collector Current
Figure 23, Turn-off Switching Waveforms and Definitions
052-6265
Rev B
12-2005
TYPICAL PERFORMANCE CURVES
APT20GT60BRDQ1(G)
ULTRAFAST SOFT RECOVERY ANTI-PARALLEL DIODE
MAXIMUM RATINGS
Symbol IF(AV) IF(RMS) IFSM Symbol VF Characteristic / Test Conditions Maximum Average Forward Current (TC = 129C, Duty Cycle = 0.5) RMS Forward Current (Square wave, 50% duty) Non-Repetitive Forward Surge Current (TJ = 45C, 8.3ms) Characteristic / Test Conditions IF = 20A Forward Voltage IF = 40A IF = 20A, TJ = 125C MIN
All Ratings: TC = 25C unless otherwise specified.
APT20GT60BRDQ1(G) UNIT Amps
15 30 110
TYP MAX UNIT Volts
STATIC ELECTRICAL CHARACTERISTICS 2.18 2.76 1.75
MIN TYP MAX UNIT ns nC
DYNAMIC CHARACTERISTICS
Symbol trr trr Qrr IRRM trr Qrr IRRM trr Qrr IRRM Characteristic Test Conditions Reverse Recovery Time I = 1A, di /dt = -100A/s, V = 30V, T = 25C F F R J Reverse Recovery Time Reverse Recovery Charge Maximum Reverse Recovery Current Reverse Recovery Time Reverse Recovery Charge Maximum Reverse Recovery Current Reverse Recovery Time Reverse Recovery Charge Maximum Reverse Recovery Current
1.40 ZJC, THERMAL IMPEDANCE (C/W) 1.20 1.00 0.80 0.60 0.40 0.20 0 0.3 D = 0.9
15 19 21 2 105 250 5 55 420 15 -
IF = 15A, diF/dt = -200A/s VR = 400V, TC = 25C
-
Amps ns nC Amps ns nC Amps
IF = 15A, diF/dt = -200A/s VR = 400V, TC = 125C
IF = 15A, diF/dt = -1000A/s VR = 400V, TC = 125C
0.7
0.5
Note:
PDM
t1 t2
0.1 0.05 10-5 10-4
SINGLE PULSE
Duty Factor D = 1/t2 Peak TJ = PDM x ZJC + TC
t
10-3 10-2 10-1 1.0 RECTANGULAR PULSE DURATION (seconds) FIGURE 24a. MAXIMUM EFFECTIVE TRANSIENT THERMAL IMPEDANCE, JUNCTION-TO-CASE vs. PULSE DURATION
RC MODEL Junction temp. (C) 0.676 Power (watts) 0.504 Case temperature. (C) 0.0440 0.00147
FIGURE 24b, TRANSIENT THERMAL IMPEDANCE MODEL
052-6265
Rev B
12-2005
60 50 IF, FORWARD CURRENT (A) TJ = 175C 40 30 20 10 0 TJ = 125C trr, REVERSE RECOVERY TIME (ns)
140 120 30A 100 80 60 40 20 0 15A
APT20GT60BRDQ1(G)
T =125C J V =400V
R
7.5A
TJ = -55C 0
TJ = 25C
1 2 3 4 VF, ANODE-TO-CATHODE VOLTAGE (V) Figure 25. Forward Current vs. Forward Voltage
T =125C J V =400V
R
0 200 400 600 800 1000 1200 1400 1600 -diF /dt, CURRENT RATE OF CHANGE(A/s) Figure 26. Reverse Recovery Time vs. Current Rate of Change 25 IRRM, REVERSE RECOVERY CURRENT (A)
T =125C J V =400V
R
700 Qrr, REVERSE RECOVERY CHARGE (nC) 600 500 400 300 200 100 0
30A
20
30A
15
15A
10
15A 7.5A
7.5A
5
0 200 400 600 800 1000 1200 1400 1600 -diF /dt, CURRENT RATE OF CHANGE (A/s) Figure 27. Reverse Recovery Charge vs. Current Rate of Change
0 200 400 600 800 1000 1200 1400 1600 -diF /dt, CURRENT RATE OF CHANGE (A/s) Figure 28. Reverse Recovery Current vs. Current Rate of Change 35 30 25
Duty cycle = 0.5 T =175C
J
0
1.2
Kf, DYNAMIC PARAMETERS (Normalized to 1000A/s)
1.0 0.8 IRRM 0.6 trr 0.4 0.2 0.0 Qrr
trr
Qrr
IF(AV) (A)
20 15 10 5
25 50 75 100 125 150 TJ, JUNCTION TEMPERATURE (C) Figure 29. Dynamic Parameters vs. Junction Temperature
0
75 100 125 150 175 Case Temperature (C) Figure 30. Maximum Average Forward Current vs. CaseTemperature
0
25
50
90
CJ, JUNCTION CAPACITANCE (pF)
80 70 60 50 40 30 20 10
10 100 200 VR, REVERSE VOLTAGE (V) Figure 31. Junction Capacitance vs. Reverse Voltage
Rev B
12-2005
0
1
052-6265
TYPICAL PERFORMANCE CURVES
+18V 0V diF /dt Adjust
Vr
APT6017LLL
APT20GT60BRDQ1(G)
D.U.T. 30H
trr/Qrr Waveform
PEARSON 2878 CURRENT TRANSFORMER
Figure 32. Diode Test Circuit
1 2 3 4
IF - Forward Conduction Current diF /dt - Rate of Diode Current Change Through Zero Crossing. IRRM - Maximum Reverse Recovery Current. Zero
1
4
5 3 2
trr - Reverse Recovery Time, measured from zero crossing where diode current goes from positive to negative, to the point at which the straight line through IRRM and 0.25 IRRM passes through zero. Qrr - Area Under the Curve Defined by IRRM and trr.
0.25 IRRM
5
Figure 33, Diode Reverse Recovery Waveform and Definitions
TO-247 Package Outline
e1 SAC: Tin, Silver, Copper
4.69 (.185) 5.31 (.209) 1.49 (.059) 2.49 (.098) 6.15 (.242) BSC 20.80 (.819) 21.46 (.845) 3.55 (.138) 3.81 (.150) 15.49 (.610) 16.26 (.640) 5.38 (.212) 6.20 (.244)
Collector (Cathode)
4.50 (.177) Max. 0.40 (.016) 0.79 (.031)
2.87 (.113) 3.12 (.123) 1.65 (.065) 2.13 (.084)
1.01 (.040) 1.40 (.055)
2.21 (.087) 2.59 (.102)
5.45 (.215) BSC 2-Plcs.
APT's products are covered by one or more of U.S.patents 4,895,810 5,045,903 5,089,434 5,182,234 5,019,522 5,262,336 6,503,786 5,256,583 4,748,103 5,283,202 5,231,474 5,434,095 5,528,058 and foreign patents. US and Foreign patents pending. All Rights Reserved.
052-6265
Dimensions in Millimeters and (Inches)
Rev B
Gate Collector (Cathode) Emitter (Anode)
12-2005
19.81 (.780) 20.32 (.800)


▲Up To Search▲   

 
Price & Availability of APT20GT60BRDQ1

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X